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ABSTRACT

In an on-off relay control system under the chatter

mode, the average motion of the plant is completely determined

by the equation of the switching function. This fact has been

applied in self-adaptive control systems in which the switching

function describes the model dynamics, and the chatter mode

is reached. The proposed policy of forward gain (switching

level) adjustment takes into account the reduction of chatter

frequency and of the control force magnitude, in addition to

the sustenance of the chatter mode. A simple two dimensional

display is used for manual operation and/or monitoring.

Several examples are presented to demonstrate the

analog computer simulation. The results show satisfactory

performance of the gain adjustment mechanism.

Known self-adaptive control systems are outlined

with emphasis on those using a relay as a key element, and

extended application to a class of distributed parameter con-

trol systems is considered. As a byproduct of this study,

a numerical method without numerical integrations is proposed

for the solution of ordinary differential equations.
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Title: Associate Professor of
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CHAPTER 1

INTRODUCTION

On-off control systems have been extensively studied

and developed by a number of investigators; one can find many

of these systems in operation in the field of aerospace

technology, and at first glance the core of the controller,

presumably a relay, is simple and relatively inexpensive.

The discovery of the bang-bang principle of time optimality

by Pontryalgin and his students increased the interest in

these systems. This principle suggests that an on-off con-

troller would permit time-optimum control, provided that the

associated switching function is properly chosen. Unfortun-

ately, a time-optimum switching function is difficult to

obtain in a closed form, and even if obtained, its analytical

expression would be too complex for practical usage.* For

this reason, researchers have been developing near-time-optimal

switching functions instead of exact ones.

Because of their simplicity, linear switching func-

tions have been the most common candidates for the approximate

* Simple plants, such as stationary second order plants with

no zero or the triple integrator plant, are exceptions. The

switching functions for these are simple enough to implement

with an analog computer (see ref. 12).



switching function. Most researchers have aimed at choosing

the coefficients of linear switching functions in such a way

that for a stable plant equilibrium is reached much faster

than when uncontrolled, 7'8 and for an unstable plant, the

i0,ii
region of stability is maximized.

Lyapunov's second method is a powerful mathematical

tool in most of the studies related to near-optimal control.

When a switching function is non-optimum, chatter motion

or limit cycle oscillation usually occurs. Most works on

this aspect of on-off control systems, including the distin-

guished works of Fl_gge-Lotz and her co-workers, have been

2,3,4,5,6,9
done with non-optimum, linear switching functions.

The chatter mode will be the subject of this thesis.

Chatter motion is a singular behavior in which the state

point of the system "slides" along the switching surface,

if a perfect relay is assumed. However, since no physical

relay is perfect, the actual motion of the state point will

never actually be a sliding motion, but rather an oscillation

about the switching surface with a high frequency and a

small amplitude. Nevertheless, the average motion slides

along the switching surface. In other words, the system's

average motion is completely determined by the equation of

the switching surface, being independent of the plant's

dynamic characteristics and disturbances.

This fact leads to a self-adaptive control idea:

one may think of the equation of the switching surface as

that of the ideal model. The equation must describe stable



dynamics. The fundamental goal is to make the chatter mode

dominate over the entire control envelope, or more speci-

fically, to achieve the chatter mode as quickly as possible

for any initial condition, and once it starts, to maintain

it regardless of any change in operating conditions. An

automatic adjustment device for the switching level or con-

trollable gain has been developed in this thesis to meet

this requirement.

The information required for this switching level

adjustment device is (1) the instantaneous value of the

switching function and (2) its time derivative. These two

must always have opposite signs,* and the increment of the

switching level is generated primarily to satisfy this re-

quirement. The adjustment logic, however, must prevent the

switching level from becoming too great. In the proposed

system, a suitably designed adjustment logic would also

reduce the chatter frequency.

There are two known self-adaptive control systems,

described in Appendix A, which make use of a relay as a key

element. The proposed system is different from both of

these in its basic approach to self-adaptation. The central

idea of the proposed system, the principle of using the

chatter mode advantageously, may be applied in other areas,

such as the control of distributed parameter systems (Appendix

B) and a numerical solution for ordinary differential

equations (Appendix C).

* A simple two dimensional display indicating these signs

may be used for manual operation and/or monitoring.
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CHAPTER 2

PRELIMINARIES : THE BEHAVIOR

OF NON-ADAPTIVE ON-OFF CONTROL SYSTEMS

2.1 General Description of Non-Adaptive Systems

A non-adaptive on-off control system is simply a

conventional on-off control system in which any parameter

of the controller is held constant. The examination of the

effects of the switching function, switching level, plant

characteristics, and the initial condition on the dynamic

behavior of the overall system will lead to the development

of the self-adaptive control system.

Figure 2.1 shows the general block diagram for the

non-adaptive on-off control system. For simplicity, the

system is assumed to be autonomous, and the standard nota-

tion, e = Xl, e = x2, . . . e (n-l) = Xn, will be used for

the state variable representation, where e stands for the

output of the plant. The level of the relay is a positive

constant and is denoted by M. The input to the plant, con-

trol force u, can be written as

u = -M sgn S (2.1)

The system can be the time optimum one, if the switching

function S is appropriate. However, the switching function



in which we are primarily interested is not optimum, but

linear and stationary, and it can be written as

S(S) = 1 + d18 + d2J2 + . . . + dm_m (2.2a)

or, if the state variable representation is used,

S(xI' M2' " " "' Xm) = Xl + dlX2 + d2x3 (2.2b)

+ . . . + dmXm+ 1

where the coefficients dl, d2, . . ., dm are all constant,

and m is an integer.

2.2 Illustrative Examples of the Pure Inertia Plant

Let us consider first the pure inertia plant

K

Gp(S) = V

where K is a positive constant. Fig. 2.2a shows free trajec-

tories in the phase plane xI - x 2 where there is no switching

curve. 3'12 There are two sets of parabolic trajectories in

the figure, corresponding to the polarity of the control

force m, i.e., the solid trajectories are for m = -M and the

dotted trajectories for m = +M. The trajectories PO and QO

constitute the time optimum switching curve. A typical time

12
optimum trajectory is sketched in fig. 2.2b.

Now let us take a linear switching function:

S = x I + dlX 2



It is easy to conclude that the system is unstable for any

initial condition if d I < 0. In fig. 2.3, the straight line

MON represents the switching curve

S = x I + dlX 2 = 0

and the curve PQTR represents a dotted parabolic trajectory

that is tangent to MON at T. Any solid trajectory such as

AB that intersects MON at a point between T and N is imme-

diately followed by an outgoing dotted trajectory such as BC

after the switch. On the other hand, any solid trajectory

such as DE that hits MON at a point between O and T is

forced to remain on the switching line, and is therefore

followed by a chatter motion proceeding toward T. At the

instant when T is reached, the constraint is released, and

the state point leaves the switching line along the dotted

trajectory TR. Consequently, the system is unstable in all

cases.

In the case of d I = 0, the behavior of the system

is a kind of limit cycle dependent on the initial condition

as shown in fig. 2.4.

For d I • 0, the switching function itself describes

stable dynamics. In fig. 2.5, the straight line MON and

the curve POQ represent the linear and the time optimum

switching curves respectively. The two switching curves

meet at U, 0, and U'. The solid parabolic trajectory KTL is

tangent to the switching line MON at T, and the dotted para-

bolic trajectory is tangent to K'T'L' at T'. The two solid

6



trajectories passing T' and U' intersect with the switching

curve MON at V and W respectively. A dotted trajectory such

as AIA 2 intersecting MON at a point between T and T' is

followed by a chatter motion immediately after the first

switching. This chatter motion eventually brings the state

point along the switching line to equilibrium, _.e., the

origin, since the switching function is stable. As seen in

the figure, however, other trajectories like BIB2B3, ClC2C 3

and DID2D3D 4 need more than one switch to arrive somewhere

between T and T' before starting the chatter motion. It

should be pointed out that the system for this particular

plant happens to be stable for any initial condition, but

this may not be so for some other p_&nt, even with a stable

switching line and possible chatter motion•

The analytical version of the foregoing geometrical

arguments is as follows. The dynamics of the system are

described by a set of differential equations in terms of the

state variables:

e

where

and

x I = x 2

x 2 = -M K sgn S

S = x I + dlX 2

(2.3)

(dI • O) (2.4)

i if S • 0
sgn S

-i if S < 0

(2.5)

7



Let us differentiate S with respect to time and use eq. (2.3)

to obtain

S = x 2 - diM K sgn S (2.6)

Multiplying both sides of this equation by sgn S and recalling

that (sgn S) 2 = 1 yields

S sgn S = x 2 sgn S - d I M K (2.7)

This equation says that the following relation is always

true whatever S may be:

S sgn S < 0 (2.8)

if Ix21 < diM K (2.9)

The interpretation of this is that a state point tends to

approach the switching line in the strip region, ix21 < dlMK ,

no matter which side of the switching line the state point

is on. It follows that the segment of the switching line in

that region is approachable from either side, and therefore

the state point cannot cross the switching line but must

"slide" along it. Any physical relay will be more or less

imperfect, typically having delay and hysteresis. As a

result, what actually occurs along the switching line is the

chatter motion with small amplitude and high frequency.

Inspecting either eq. (2.6) or eq. (2.7), it is also easy

to see that the rest of the switching line belonging to the

outer region, Ix21 > dlMK, is reachable only from one side as

8



indicated in fig. 2.6, and hence no chatter motion can occur

there. The two terminal points of the switching line segment,

namely (-d_ MK, dlMK) and (d_MK, -dlMK), can be identified

as T and T' in fig. 2.5 by a simple calculation.

During the chatter mode, the average motion of the

state point is described by the equation of the switching

line,

S = x I + dlX 2 = 0

or the overall system's dynamics can be eRpressed simply by

1

a first order lag, 1 +dlS " The amplitude of the chatter

motion, depending on the degree of imperfection of the relay,

may be quite small. For this reason, the instantaneous

deviation of the state point from the average may also be

very small. The theoretical value for sgn S during the

sliding motion when the switching function S is identically

zero can now be evaluated as follows.

For sliding mode,

S -= 0 (2.10)

Then also

S -- 0 (2.11)

Thus from eq. (2.6)

(2.12)

9



For the chatter mode, this can be considered to be the

average output of the physical relay.

2.3

Then

Undesirable Phenomena

Suppose that the plant contains a zero, S = -s.

G (s) = K(s + a) (2.13)

P S2

The dynamics of the system can be written

x I = x 2

" d sgn S
x 2 = -MK(sgn S + a dt )

(2.14)

where the switching function is the same as in the last case

of the foregoing section, namely

S = x I + dlX 2 (d I > 0) (2.4)

We are now interested in seeing how the zero introduced in

the plant will change the overall dynamics of the system.

From eq. (2.4) and eq. (2.14) S becomes

= x 2 - dlMK sgn S - sdlMKd s_ndt S (2.15)

This equation is the same as eq. (2.6) except that the last

term on the right hand side has been added. Except for the

exact moments of switching, the last term vanishes, and a

trajectory in the phase plane belongs to the same parabolic

family as before.

i0



d
At each switching moment, on the other hand, _(sgn S)

behaves like the delta function with polarity depending on the

direction of the switch. This fact will result in a jumping

phenomenon whenever the state point hits the switching line.

The magnitude of each jump is given by Isl MK in the direction

of x 2 or I_I dlMK in the direction perpendicular to the

switching line.

Fig. 2.7a shows a possible motion when s > 0, i.e.,

negative zero. The imperfection of the relay may be somewhat

exaggerated in the figure. The motion is a high frequency

oscillation which is one-sided with respect to the switching

line. The magnitude of the jumping could be relatively large.

Fig. 2.7b and fig. 2.7c show two different conceivable motions

when s < 0, i.e., positive zero.

The argument can be extended to show the possible

existence of similar motions for higher order plants with one
5

or more zeroes. Furthermore, replacing the switching function

S = x I + dlX 2

with a second order switching function

S = x I + dlX 2 + d2x 3 (dl, d2 > 0)

instead of introducing a zero in the plant will cause similar

jumping behavior, since S again will contain the factor
d
_-_(sgn S). Needless to say, these phenomena are undesirable

and should be avoided•

ii
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e

Fig. 2.1 Non-Adaptive On-Off Control System

X2

/

Fig. 2.2a Free Trajectories for

the Pure Inertia Plant

Q

u- M

•u = -M

Fig. 2.2b A Time Optimum

Trajectory for the Pure

Inertia Plant
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D

M

Xl

Fig. 2.3 Unstable Behavior of the Pure Inertia

with S = xI + d I x 2 (d I < 0)

-M

/ xl

u= M I

Plant

Fig. 2.4 Unstable Behavior of the Pure Inertia Plant

with S = xI
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CHAPTER 3

PRINCIPLES OF SELF-ADAPTATION

3.1 Foundations

It was shown in Chapter 2 that undesirable jumping

phenomena may occur if the plant equation contains any

differential operation in the control input, or if the order

of the switching function is not appropriate. When the

plant and its dynamics are given, a compensation may be

necessary in order to achieve a relationship of the form:

S = FI( _, r, d, t) -MF2(x, t) sgn S (3.1a)

or equivalently

S sgn S = Fl(X, r, d, t) sgn S - MF 2(x,t) (3.1b)

where

x = state vector

FI= some function of

r = reference command input

d = disturbance input

t = time

F2= a function of the state vector and time (presum-

ably referring to the gain of the plant including

the servo and the actuator)

18



The role of the compensation is to cancel any zero in the

plant and/or to adjust the order of the plant in order to

obtain S in the form of eq. (3.1)•

The switching level M must now be adjusted so that

the state point is always approaching the switching surface

in the state space. This requirement is quantitatively

stated by the inequality:

S sgn S < 0 (3•2)

If the above condition is instantaneously satisfied, any

initial condition will be followed by a trajectory which

will always be approaching the switching surface. Once the

switching surface is hit, the sustained chatter mode will

follow• Combining (3.1b) and (3.2) when F2(x, t) is assumed

positive, the switching level M must be

Fl(X , r, d, t)
M > -- (3.3)

F 2 (x, t)

Fig. 3.1 shows the general configuration of the self-adaptive

system. The details of the switching function generator and

the switching level adjustment mechanism are discussed in the

following sections•

3.2 A Class of Applicable Systems

The following are some examples of systems which

can be cast into the form of eq. (3.1) after some compensation:

19



x I = X 2

X 2 = X 3

(3.4)

Xn_ 1 = x n

x
n = fl(x, d, t) + f2(x, t) u

where the control force u is expressed by -M sgn S, and the

switching function must take the form

S = x I + dlX 2 + . . . + dn_iX n (3.5)

- (n0r + nlr + . . . + nn_2r(n-2) )

That is, the model transfer function is of the n-l'th order

for an n'th order system, i.e.,

XlM (s)
n-2

n û + nls + " " " + nn_2S

r(s) 1 + dlS + d2 s2 + . . . + dn_l sn-I

(3.6)

where

XlM = desired output

d
n-i = a positive constant

d I, d 2, • . . dn_2: presumably non-negative constants

n0, nl, . . . nn_2: constants

2O



Fig. 3.2 shows the mathematical switching function generator

for this case. In eq. (3.4) fl and f2 may be nonlinear

functions of their arguments, f2 may refer to the combined

gain of the plant, servo, and actuator, and is assumed to

be positive for simplicity. F 1 and F2, which appeared in

eq. (3.1), can now be evaluated for this system:

Fl(X, r, d, t) = x 2 + dlX 3 + . . . + (3.7)

+ dn_ 1 fl(x, d, t) - (nor + nlr + . . .

n-2
+ nn_2r )

F2(x, t) = dn_ 1 f2(x, t) (3.8)

For example, if the combined transfer function is time-

invariant, it is

K

2 n
1 + als + a2s + . . . + anS

(3.9)

where

K, al, . . ., an are constants

then fl and f2 can be easily identified

fl (x)

an_iX n + an_2Xn_l + . . . + alx 2 + x I

an
(3.10)

21



K (3.11)
f2 (x) = _-

n

3.3 Switchin_ Level Adjustment

One obvious switching level adjustment scheme would

be to measure continuously each of the variables incorporating

F 1 and F 2, and then to compute the right hand side of the

inequality (3.3), generating the appropriate switching level.

This "explicit adjustment scheme" may not lead to a genuine

self-adaptive policy for the following reasons• First, the

system would be complex and expensive, since a number of

sensors, transducers and wires, in addition to an on-line

computer would be necessary. Secondly, as mentioned in Appen-

dix A, this type of system is in a sense open-loop and less

self-adaptive since it depends on the anticipated explicit

formulations of F 1 and F 2 necessary for the computer program-

ming.

A better scheme is to make use of the higher control

levels, which, as seen in eq. (3.1b), are more likely to

satisfy the basic inequality condition given in eq. (3.2).

The scheme sketched in fig. 3.3a is first proposed as a can-

didate for "implicit adjustment logic." Although the con-

e - •

ditions S sgn S < 0, S sgn S < 0, sgn S sgn S = -i and

S S < 0 are all equivalent, the first one is most suitable

for the abscissa, since its magnitude indicates the distance

from the present position of the state point to the switching

surface.
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Suppose that the initial switching level M is not

great enough to satisfy the condition S sgn S < 0. Starting

from the initial condition 1 in fig. 3.4a, the state point

will go away from the switching surface MN for a while• But

the rate S will be rapidly decreasing in magnitude because of

the increasing switching level• The turning point 2 is

reached, and the state point begins to approach the switching

surface• At the same time, the sign of S sgn S is reversed

to the desired one, i.e., negative• This transition appears

as a discontinuous jump from the right hand side to the left

in fig. 3.3a. After the turning point, M is still increasing

to accelerate the approach to the switching surface• As soon

as the switching surface is finally hit at 3, the chatter

motion starts, and the switching level stops increasing• The

switching level remains constant thereafter as long as the

chatter mode naturally continues. The control level, however,

might not continue to sustain the chatter mode due to some

later environmental changes• In such a case, S sgn S may be-

come positive again, and the adjustment logic increases the

level enough to pull S sgn S back to the left hand side. It

should be noted that M is larger at greater distances from the

switching surface in order to shorten the pre-chatter mode.

There may be many cases in which the lowest possible

control level is desired in order to save electric or hy-

draulic power or fuel supply, or to avoid hardware limita-

tions such as the saturation of an airplane's control surface

deflection angle. The condition necessary for sustaining the
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chatter mode is merely that S sgn S be negative, regardless

of its absolute value• Consequently, the level of M during

chatter mode need not be very high, as long as it is high

enough to make S sgn S negative. With this in mind, another

adjustment logic is proposed in fig. 3.3b. The greater the

switching level, the shorter the pre-chatter mode. Therefore,

at 3, the beginning of the chatter mode, the switching level

is presumably too great just to maintain the chatter mode. AS

the chatter mode is established, the logic begins to remove

this excess switching level. When too much is removed, the

chatter mode will cease, pushing S Sgn S to the positive side.

Then, according to the logic, the switching level starts to

gain in magnitude again, resulting in a jump to the negative

side at 4 (fig. 3.3b). After the jump, the state point approaches

the switching surface as before, and the system will repeat

this cycle, 3-4-3• With an appropriately designed logic, the

trajectory in the state space might be of the form shown either

in fig. 3.4b or 3.4c. The frequency of the cyclic repetition

could undoubtedly be much lower than that of the original

chatter mode, while the maximum magnitude of the deviation or

error determined by S at 4 could be kept sufficiently small.

Whatever the order of the system might be, the desired

condition is simply a matter of the sign of the S and S.

Therefore, a simple two dimensional visual display would be

possible for manual adjustment or for manual monitoring pur-

poses. Fig. 3.5 shows an example of such a display• The

second and fourth quadrant are shaded to indicate the target

area or acceptable region•
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Preparations

The experiments were performed using the TR-48

analog computer in the Department of Aeronautics and Astro-

nautics at M.I.T. Three different switching level adjustment

logics were employed, mechanized by the diode function gen-

erator. The M-S sgn S characteristics of the logics are

recorded in fig. 4.1. Logic B (fig. 4.1b) has smaller values

of M for large magnitudes of S sgn S, and narrower and

sharper notch characteristics over small magnitudes of S sgn S

than those of logic A (fig. 4.1a). The characteristics of

logic C (fig. 4.1c) are almost the same as those of B, but

the former is symmetric with respect to the ordinate•

Electronic switches were used to realize the sign

functions. It should be noted that the data recorded on the

strip chart for a control force u = -M sgn S during the

chatter mode do not accurately represent the actual control

force. The actual control force is the output of the elec-

tronic switch which is essentially an unbiased rectangular

wave like the one shown in fig. 4.2. Its frequency was high

enough to dominate the plotting pen's mechanical dynamics.

As a result of the filtering, the recorded data may look like
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the data shown in fig. 4.2 with a bias equal to the average

of the actual control force and with an amplitude and frequency

determined by the pen's dynamics as well as the actual control

force•

4.2 Example 1

The plant is of the pure inertia type.

for the dynamics is

x= -d + u

where

u = -M sgn S

and d is a parameter.

S = x + Tx

The switching function S is

The equation

(4.1)

The system is autonomous, i.e., there is no command input.

The objective is first to bring the state point (x,x) from

an initial location (x0,x 0) to the switching line quickly,

and then to continue towards the final state (0,0) along the

switching line, In short, the overall approach to the goal

-Tt
is to be exponential, like e .

A corresponding practical example would be a lunar

soft-landing mission with bang-bang thrust control in the

lunar vertical direction. For such a case,

x = the lunar altitude h

d = the lunar gravitational acceleration, g£

M = the thrust acceleration, i.e., T, the thrust

divided by the mass of the lunar module
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Three initial conditions were assumed:

I.C.I

I.C.2

I.C.3

x 0 = 8.0 volts

x 0 = 8.0 volts

x 0 = 8.0 volts

x = -i.0 volts

x0= 2.0 volts

x0= -4.0 volts

The input parameter d was set at 0.081 volts• If the scaling

correspondence

2 km ÷÷ 1 volt

100 m/sec ÷÷ 1 volt

10 m/sec 2 ÷+ 1 volt

1.622 m/sec 2,
is made, the value of d represents that of g£,

and each run gives the simulation, condensed ten times, for

the soft-landing mission from the lunar altitude 16 km. Fig.

4.3 shows a possible mechanization of such a lunar soft-

landing guidance system•

The results for I.C.I, 2, and 3 with adjustment

logic A are shown in fig. 4.4. For each initial condition,

T
the time history of x(h), u (_, thrust acceleration), and

S sgn S are recorded• In addition, the trajectory in the

M _ S sgn S plane is recorded in order to see how the adjust-

ment logic actually worked•

-i
The value of _ was chosen to be 2.6 sec . The

initial value of the switching magnitude M 0 was arbitrarily

set at 0.50 volts for all these runs. Fig. 4.4a and 4.4b

represent the results when S sgn S was initially negative•

The switching level kept increasing, accelerating the
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approach to the switching line. At the very beginning of the

chatter mode, at about 1.5 sec, the increased M read 1.15

volts• During the chatter mode, M was gradually decreased
• I

because of the slightly negative value of M at S sgn S = 0.

When M was reduced to 0.1 volts at 17 sec, this value of M

was insufficient to sustain the chatter, because of the small

value of x (see eq. (4.3)). The chatter ceased, and S sgn S

tended toward the positive• But logic A acted immediately to

increase M and to draw S sgn S back to the negative• Again,

M was reduced to render S sgn S positive• From 20 sec on,

this cycle was repeated. The system's behavior during this

_n_va! was not chatter• The switching function S was kept

barely negative, though S changed its sign repeatedly, keeping

the control force u positive• Specifically, u constantly

remained at 0.081 volts, balancing -d, or the gravity accelera-

tion. The offset error in x arose because S was not precisely

zero for this interval•

In fig. 4.5a and 4.5b are shown the results for I.C.2.

" the positiveThe initial S sgn S was on the "bad side,

Nevertheless, it jumped almost instantly to the negative side,

because of the logic. Shortly afterwards, the chatter motion

started and continued until 34 sec. M was gradually reduced

from 2.5 volts to 0.i volts during the chatter. Unfortunately,

for the reason noted in section 4.1, the record for u does

not show the history of the decreasing M itself•

Fig. 4.6a and fig. 4.6b show the results for I.C.3.

The initial S sgn S was again positive, but this time, S sgn S
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traveled away for a while until M was large enough to make

the jump to the negative side. Fig. 4.7 shows the trajec-

tories in the phase plane for the above cases•

Next, logic B instead of A was employed for I.C.I.

The results are shown in fig. 4.8a, b, and c. Since M for

S sgn S = 0 was now further negative, the excess magnitude

was removed more promptly• The post-chatter regular mode

beginning at 5 sec lasted until 14 sec, when the new chatter

mode started• This second chatter motion is different from

the first one. It is caused by the behavior of S sgn S

periodically moving back and forth around its null value.

Therefore, it may be reasonable that its frequency should be

much lower than that of the first chatter motion.

Since the notch was so narrow, S sgn S was virtually

held at zero after the first chatter mode started, so there

remained no offset error in the output x. The microscopic

plot shown in fig. 4.8c revealed the cyclic behavior in the

vicinity of the origin•

Lastly, logic C was employed for I.C.I. The results

are shown in fig. 4.9a, b, and c. The remarkable feature in

this case is the constant cyclic behavior closing the entire

narrow symmetric notch which resulted in a time history of u

with a much reduced frequency, about 0.35 c/sec. There was a

short high frequency chatter motion in every period• It

occurred each time S sgn S crossed the abscissa from the left

hand side to the right in the M-S sgn S plane. The offset

error in x could have been greatly reduced if the notch had

been made narrower•
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4.3 Example 2

The plant is second order and time-varying.

equation of the dynamics is

x + a(t) x = u

The

(4.4)

where

u = -M sgn S

and the initial magnitude M 0 was arbitrarily set at 0.20 volts•

Fig. 4.10 shows the functional block diagram of this system.

The parameter a(t) was

a(t) = exp (-0•05h) - 0.5 volts (4.5)

This time history is shown in fig. 4.11. The uncontrolled

plant would be obviously unstable. The first order model

transfer function

x(s) 1 (4 6)
r-T_= 1 + Ts

-i
= 2.6 sec

was assumed.

It follows that the switching function S is

S = x + Tx - r (4.7)

The command input r was a near step, as shown in fig. 4.12.

The model response x m to the command is also shown in the same

figure• All initial conditions were null throughout the

experiment.
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In fig. 4.13a are shown the actual plant's output

i

Xa, the error, e = x a Xm, u, S, and S sgn S, when logic B

was used. The plot of M-S sgn S is shown in fig. 4.13 b.

Through the entire run, S was held slightly negative, while

S sgn S was mostly negative with occasional impulsive changes

to positive whenever S approached the zero line. Thus there

was neither chatter motion nor single switching. Note that

the only change in the polarity of u occured at 13 sec; it was

attributed to the polarity change of the continuously decreasing

M. From then on, M was negative• At any rate, the error

remained sufficiently small•

It should also be noted that M is assumed to be posi-

tive in the theory• In fact, the characteristics of the

adjustment logics were originally decided by the properties

described in the inequality (3.3), which is valid only under

such assumptions. However, M may be negative in the vicinity

of the origin of the M-S sgn S plane for adjustment logics

such as that shown in fig. 3.3b. As long as M is negative,

the cyclic behavior around the origin is clockwise; when

positive, the motion is counterclockwise.

It remains to be demonstrated that the above results

are practically the same as the "sliding motion" by the ideal

perfect relay. The analysis is similar to that in the last

part of section 2.2. For sliding mode, the switching function

would be null:

S - 0 (4.8a)
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Thus, from eq. (4.7)

S = x + Tx - r = 0 (4.8b)

S should also be indentically zero

S - 0 (4.9a)

Thus

x + _x - r = 0 (4.9b)

Eliminating x and x from eq. (4.4) , (4.8b), and (4.9b)

1 i - E)
U = [a(t) + _] x + --(rx x (4.10)

This is the continuous control force which would be obtained

by using the ideal perfect relay• Using the model output

data, the above time history of the ideal control force was

calculated and plotted as the dotted curve in fig. 4.13a,

where the actual control force is recorded• Little difference

is observed between the two. The evidence indicates that

adjustment logic B effectively made the actual relay be the

perfect ideal relay, and made the sliding motion real.

From another point of view, the continuous form of

the control force given by eq. (4.10) might suggest the linear

equivalent system shown in fig. 4.14. However, this is based

on the explicit formulation for u, and the precise measurement

of the plant's parameter a(t), would be less adaptive and less

practical. In other words, it refers to the programming

adaptive system discussed in Appendix A.

36



Secondly, logic C was employed. Discussion of the

results, shown in fig. 4.15a and b, would be similar to that

in section 2.2.

4.4 Example 3

This plant is second order and nonlinear•

tion of the dynamics is

o, •

X - X X - X = U

The equa-

(4•11)

where

u = -M sgn S

and the initial magnitude M 0 was arbitrarily set at 0 volts.

e

The uncontrolled plant would be unstable. The command input

and the model are exactly the same as in example 2.

Fig. 4.16 shows the results when logic B was used;

fig. 4.17, logic C. These results are similar in nature to

the corresponding results in the last example.

4.5 Example 4

The last experimental example consists of the appli-

cation of a roll control system to a supersonic transport. For

simplicity, one degree of freedom roll dynamics are assumed,

neglecting the coupling effect due to side slip and yaw motion.

This assumption may be reasonable in practice, if a suitable

damper is provided for the Dutch roll mode. The SST's transfer

function Ga(s) from aileron deflection angle 6a to roll angle

is then
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where

KGa(S)= = (s(l + Ts) (4.12)
a

K = gain

= time constant

The aileron servo actuator is assumed to have the transfer

function

_ _a_ 1
GA(S) u 1 + 0.1s (4.13)

See reference 22 for further treatment of this SST.

Two representative flight conditions and their

corresponding values for K and are shown below.
.4

Flight Condition I

Mach: 0.4, Altitude: 5,000 ft.

K = 4.74

-i
= 1.18 sec

Flight Condition II

3.0, Altitude: 70,000 ft.

K = 6.83

-i
= 5.30 sec

Mach :

The model transfer function Gm(S) relating the model output

x m to the command input r is the second order function that

has been taken for granted as the ideal model for human pilots,

namely

= 1

Gm(S) s 2 _m (4.14)

+2_-- s + 1

W m m
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where

_m = 0.7

w = 3.0 rad/se¢
m

Thus the switching function is

x  x÷x r
S =-_+ 2 w

w m
m

where

(4.15)

x=

Fig. 4.18 shows the time history for the command and the

model output.

Before being equipped with the proposed self-adaptive

system, the SST had a conventional adaptive system using the

classical follow-up principle illustrated in Appendix A, with

lead compensation in the forward loop. Fig. 4.19 shows the

block diagram and fig. 4.20 the results.

The parameters involved in the lead network were

selected so that an adequate response under Flight Condition I

was possible. As seen in the figure, however, this system

with the parameters so selected proved unstable under Flight

Condition II. On the other hand, the proposed self-adaptive

system, whose possible implementation is suggested in fig. 4.21,

gave satisfactory results for both Flight Condition I and II,

as shown in fig. 4.22 and 4.23 respectively, when adjustment

logic B was employed.
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Fig. 4.9b Example 1 for I.C.I with
Adjustment Logic C
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER STUDY

5.1 Conclusions

The chatter mode can be advantageously used for

self-adaptive control systems, if the following basic require-

ments are met:

(i) There must be a switching function to describe

the ideal model dynamics

(2) The chatter mode must be reached quickly and

then be sustained

(3) The chatter frequency must be reduced

(4) Any zero in the plant transfer function must

be cancelled

Under the chatter mode, the average motion of the

plant is determined by the equation of the switching function.

Requirements (i) and (2) are thus essential first of all.

Requirement (2) reflects a need for some suitable

forward gain (switching level) adjustment. The proposed

scheme for the adjustment is simple, requiring Only two

pieces of information, the instantaneous switching function
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and its time derivative. Furthermore, it can remove any

excess amount ofgain, and reduce the high chatter frequency

as well. In particular, the experiment (example 2, logic B)

suggests that well designed adjustment logics will realize

"the sliding mode with physical relay" rather than the

chatter mode, eliminating the frequency problem altogether.

The conditions for applying this self-adaptive system

are

(i) There must be no zero in the plant transfer

function

(2) The model transfer function must be of n-l'_h

order for an n'th order plant

Zeroes may be common in most on-off control systems,

but an appropriate compensation network could effectively

eliminate these zeroes to fulfill condition (i). Either com-

pensating the original plant or slightly modifying the ideal

model by compromising the base somewhate, could adjust the

order of the transfer function to fulfill condition (2).

5.2 Recommendations for Further Study

The following topics are recommended for future study

in this area:

(i)

(2)

(3)

Examination of anti-disturbance performance

More quantitative investigation of the dynamics

of the adjustment logic for design purposes

Manual experiments using the suggested visual

display
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C4) Extended application of the basic idea in areas

other than self-adaptive control systems,

%

including those suggested in Appendices B and C*

* Experimental verification of the theory given in Appendix C

is in progress using a digital computer.
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APPENDIX A

THE STATE OF THE ART OF SELF-ADAPTIVE CONTROL SYSTEMS

A. 1 The Need for Self-Adaptive S_stems

This section first discusses and justifies the

general philosophy underlying self-adaptive control systems,

and then outlines the basic ideas in the well-known self-

adaptive control systems. In particular, two self-adaptive

control systems, in which a relay plays a crucial role will

be discussed for purposes of comparison with the proposed

system.

An adaptive control system may be defined as one

which can maintain satisfactory performance of the plant over

a wide range of changing conditions, either external or inter-

nal. The terms "adaptive control systsm" and "self-adaptive

control system" are not clearly distinguished in the litera-

ture. Yet, if one'wants to insist on the distinction, a self-

adaptive control system could be defined as an adaptive

control system which organizes itself to accomplish its objec-

tive through internal processes of measurement, evaluation,

13,19
adjustment, etc.

Any conventional control system is adaptive to some

extent. The limitation is that it need not or cannot cope

with a wide range of environmental conditions. It can deal
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with only a limited range of plant parameter variations, and

limited kinds of external disturbances and command reference

inputs which are anticipated in the design stage.

Fig. A.I shows a follow-up servo system. First

suppose that the system is a conventional one, i.e., the plant

with transfer function Gpi(S) can be considered virtually

stationary. The closed loop transfer function relating the

output to the command input is

Output Gc(S) Gp(s)
= -_ 1

Input 1 + G c(s) Gp(S)

for G (s) G (s) >>I
c p

The transfer function to the disturbance input is

Output G_(s) _ 1

Disturbance = 1 + S c (_) Gp (s) -

Forgetting about the stability problem for a moment, it is

necessary to make the controller transfer function, Gc(S),

great enough to satisfy both G (s) >> 1 and G (s) G (s)>>l
c c p

in order to achieve good follow-up performance and insensitivity

to disturbance input.

This follow-up principle leads directly to an adaptive

control system whose functional block diagram is shown in fig.

A.2. Unfortunately, however, such a high forward gain tends

to introduce instability, and furthermore, the extremely high

gain is practically impossible to realize by linear components.

The conventional linear design must take this conflict into

account.
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Various advanced vehicles in modern aviation en-

counter tremendous changes in,flight conditions. For instance,

the parameters of a re-entry vehicle vary by two orders of

magnitude. When a supersonic fighter with a VTOL capability

is hovering at zero speed, the aerodynamic damping disappears

and the transfer function from the stick movement for the

stabilizing jets to the aircraft's longitudinal attitude be-

comes merely a double integration. Even under such sharply

changing conditions, the vehicle dynamic response must remain

relatively constant to provide the pilot or autopilot with

almost invarying handling characteristics over the entire

flight regime.

A controller designed for a fixed condition can never

accomplish this; it would yield either poor performance or

_nstability under some other flight condition. One obvious

solution is to predict all possible flight conditions and

program the parameters of the controller as functions of the

appropriate parameters representing such flight conditions.

In fact, until recently, such an approach had not been uncommon

for missile autopilots. The adjustment of controller gain,

for instance, is basically scheduled according to al£i%ude and

Mach number. When this system works, it works well with the

distinct advantage of the fastest adaptation to the new envir-

onmental changes among all types of adaptive control systems.

However, the following disadvantages were fatal:

i. The system is an open loop system in a certain

sense. The operational strategies are based upon the mathe-
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matically modelled plant for off-line analysis, not upon the

real one. the controller would not know if an unprepared

environmental condition arose. Using the terminology, it

may be an adaptive control system, but clearly may not be a

self-adaptive one.

2. Its versatility could be increased only by

costly and time consuming processes. A series of wind

tunnel tests would be needed to discover all the aerodynamic

derivatives' profiles, and extensive systems analysis and

simulations on the ground would be necessary in order to find

out the optimum parameter programming. Finally a number of

actual flight tests would have to be made to take account of

pilot opinion.

3. Furthermore, a high performance vehicle might be

so dominated by its nonlinear and time-varying characteristics

that the usual Laplace transformed plant modeling would not be

allowed. An advanced interceptor, for instance, can climb from

the ground up to the stratosphere in one minute and can make

very sharp turns. Such climbing ability might make the vehicle

dynamic characteristics time-varying, since the flight condi-

tion could change greatly within a short time relative to the

plane's characteristic time. Such maneuverability might nullify

the standard small disturbance assumption on which the familiar

linear equations of the vehicle dynamics are based, thus intro-

ducing significant nonlinear characteristics. The failure

of a time-invariant linear model of the plant is one of the

most condemned features of open loop adaptive control systems.
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Even though response to one particular input might

be acceptable, response to another input might not. This

means that designers would have to work with almost infinite

numbers of combinations among the disturbance and command

inputs and the internal conditions of the plant, case by case.

A.2 Principles of Known Self-Adaptive Control Systems

The above discussion may be sufficient to justify

the need for more versatile, flexible and easily produced

self-adaptive control systems. With aircraft application in

mind, a variety of self-adaptive control systems have been

proposed, and some have been installed in actual aircraft. 13'23

Each system has an indirect and implicit scheme for envir-

onmental identification. According to the basic technique

employed, the available self-adaptive control systems can be

roughly classified into three groups.

The first group includes those systems to which small

23
test signals are fed. The signal is usually impulse or

sinusoidal. The response is monitored at a certain station

in the loop and is kept invariant by an adjusting mechanism.

In the Sperry Self-Adaptive Control System, for instance,

narrow, small amplitude pulses are fed to the servo actuator,

and the response of the servo is measured. If the system is

linear, the impulse response may also be obtained by applying

white noise and evaluating the cross-correlation function of

6,13
the output and input with appropriate electronic circuitry.
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The second group includes those systems which have

a precisely defined mathematical performance index. In the

model reference self-adaptive control system, which was pro-

posed originally by the M.I.T. group, the command input

signal is fed to both the adaptive loop and the model simul-

taneously. 14'22'24 The performance index is a quadratic

function of the error between the output of the actual plant

and that of the model. In addition, the index may contain the

error time derivatives. The parameters of the controller are

continuously adjusted to minimize the index by the parameter

influence technique.

The perturbation parameter tracking self-adaptive

control systems, which were originally studied for aircraft
6,15

engine cruise control, may also belong to this category.

In these systems, each adjustable parameter or the control

input itself is periodically perturbed about its present average

value by either a linear or sinusoidal sweep with an amplitude

large enough to catch the values that extremize the performance

index. Assuming that the average value of the parameter is

not far from the optimum and that a parabolic relationship

exists between the performance index and the parameter, the

average fundamental components of the error signals in the

index are used to drive the average value closer to the opti-

mum through appropriate filtering and network techniques.

The third group consists of those systems which con-

tain a relay in the main adaptive loop as an important element.

Two well-known systems are the Minneapolis-Honeywell Self-

Adaptive System and the MG-90 Adaptive Fl_@ht Control System,

16,17
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also developed by Minneapolis-Honeywell. Despite the fact

that both of the two utilize a relay and are described by the

same basic block diagram (fig. A.2) with the model as input

filter, the two are operationally entirely different from

each other, making use of different relay characteristics.

As mentioned earlier in connection with the system in fig.

A. 2, a very high forward gain would y_eld a self-adaptive

control system only when (a) this high gain is produced in

the controller and (b) there is no r£sk of instability. In

no linear system will both (a) and (b) be true at the same

time.

The use of relays in the controller, however,

improves the situation. First, an infinitely high gain is

theoretically obtainable by relay. Second, although this high

gain tends to cause instability in the loop, this instability

is not a rapidly diverging one as in linear systems, but

rather a virtually constant oscillation called a limit cycle

(presumably a stable limit cycle). Last, the magnitude and

frequency of this limit cycle are controllable, and while

maintaining a relatively high gain, one can remove this limit

cycle entirely.

Keeping these advantagesof the relay in mind, let us

look first at the principle behind the Minneapolis-Honeywell

Self-Adaptive Control System. 6'20'21 Fig. A. 3 shows the block

diagram when the system operates as a pich-rate command system.

The fundamental goal of the system is to keep the effective

forward gain high enough to maintain a small error rate, e,
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while eliminating a possible limit cycle in the loop. Note

that the switching logic circuit is simply a proportional

plus derivative circuit.

The A-C dither signal is fed to the electronic relay

along with the output of the switching logic circuit. This

external dither signal is B sin 2 _ft. where the amplitude B

is constant and the frequency f is 2000 cps. The role of

the dither signal is to alter the relay characteristics as

shown in fig. A.4. A represents the average magnitude of

the input to the relay. Since the contribution of the

dither signal will be averaged out, A actually represents

the average magnitude of the switching logic circuit output

which is a linear combination of e and e. The solid curve

represents the normalized equivalent gain K (A,B) obtained
eq

by the dual input describing function technique for the perfect

6
relay when the dither signal is present. For comparison,

the normalized equivalent gain when no dither signal is present

is shown (dotted curve). The important feature of the altera-

tion is the fact that K is kept finite, while for the con-
eq

ventional describing function, K goes to infinity for small
eq

input signals•

Now let G(s) be the ope n loop transfer function

excluding the dual input describing function. Suppose that

there is no dither signal so the K can take any value from
eq

zero to infinity, regardless of the switching level M. As

seen in fig. A.5, there is always an intersection between the
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K1 segment and the plot of G(jw) in the complex plane.

eq

This clearly indicates that the limit cycle is unavoidable.

Now let us introduce a dither signal so that there

is a maximum finite value kM for K where k is a constant
eq

(see fig. A.4). Since the 1 segment is thus shifted
Keq

to the left, it is now possible to eliminate the intersec-

tion and avoid the limit cycle as shown in fig. A.6a. Fig.

A.6b shows the Nyquist plot for the overall open loop transfer

function and indicates that the system is stable according to

the Nyquist criterion as well. Further, for adaptability,

the incremental Nyquist plot must be stationary in the com-

- .... _ __,, m_-_n P_r this Dur-piex plane with _ _t=_n ........ _ ___ .

pose, the switching level M is adjusted as follows: M is

assigned its maximum value to make K as great as possible,
eq

since a large average error implies that the gain for the

overall open loop transfer function KeqG(jw) is insufficient.

Next, if the average error starts to decrease significantly,

due perhaps to an increasing G(jw), M should be decreased to

reduce the possible values for K and to avoid any possi-
eq

bility of a limit cycle.

The system was flight tested in a F94c. The perfor-

mance was reported to be excellent except at the extreme

ranges of the flight envelope.

The MH-90 Adaptive Flight Control System (fig. A.7)

does not try to eliminate the limit cycle. The basic aim of

the system is to maintain a limit cycle with an amplitude
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small enough to be tolerable for a pilot and passengers, as

well as for hardware components. 13'16'23 The limit cycle is

fed through a narrow band filter which is tuned to 25 rad/sec,

the ideal limit cycle frequency. The output of the filter

is rectified and compared to a set point of the limit cycle

amplitude. The difference is used to regulate the forward

loop gain through the switching level control so as to reduce

the difference. The aircraft for which this system has been

equipped are the experimental aerospace vehicle X-15, the

supersonic delta-wing VTOL prototype fighter Hawker P 1127,

and the F-102A interceptor. It was announced that the Dyna

Soar vehicle was also to be equipped with such a system.

Although this limit cycle adaptive flight control system has

only been tested in such small aircraft, it appears to be

highly successful, thus far. For large vehicles, which

ordinarily have a structural characteristic frequency in the

range 5 to i0 c/s, some improvement would be necessary to

avoid a catastrophic resonance, for the limit cycle frequency

is likely to be in this same range.

A. 3 Comparison with the Proposed System

Both of the Minneapolis'Honeywell systems employ

both the concept of a prefilter representing the model and

the principle of a follow-up servo. In the proposed system,

on the other hand, the model is cast ahead of the bang-bang

element as the switching function. The switching level ad-

justment logic can greatly reduce the chatter frequency and

85



even halt the chatter, if properly designed. In the

Minneapolis-Honeywell Self-Adaptive System, elimination of

the limit cycle (substantially the same phenomenon as chatter)

is accomplished with the help of the externally introduced

dither signal. In the other Minneapolis-Honeywell system,

the limit cycle is regulated more explicitly by the auxiliary

loop containing the amplitude setting and the filter tuned

to the ideal frequency.
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B.I

APPENDIX B

SOME CONSIDERATIONS ON

DISTRIBUTED PARAMETER SYSTEM APPLICATION

Current Studies on Distributed Parameter Control

Systems

A distributed parameter system is one whose para-

meters are distributed in space. Mathematically, such a

system is usually governed by a partial differential equation

or integral equation, while a lumped parameter system is gov-

erned by a set of ordinary differential equations. Many

energy converters such as chemical reactors, nuclear reactors,

furnace systems, fluid transport systems, and heat exchangers

are regarded as distributed parameter systems. In the design

of attitude control systems for an aerospace vehicle with

distinct structural flexibility or fuel sloshing, a distributed

paramter model of the vehicle is used.

One possible approach to distributed parameter systems

design is to employ the spatial quantization technique that has

been used to obtain a numerical solution of partial differential

equations. With this technique, the original equation is

approximately converted to a set of ordinary differential-

difference equations. The design problem could then be handled

using the well-developed feedback control techniques for lumped
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parameter systems. This so-called modal approach can be found

in ref. 30, where distributed feedback is introduced, leading

in practice to multiple feedback loops. Generally speaking,

however, such an approach might be erroneous, since the

actual system does not always register satisfactory performance,

or, at worst, it might become unstable. This would probably

happen if the partition for the quantization is not thick

enough. Suitable partitioning, on the other hand, would re-

quire dozens of feedback loops.

The recent trend has been to focus directly on the

original partial or integral equation itself in dealing with

design problems concerning performance and stability. In

particular, there is increasing interest in optimal control

with regard to distributed parameter systems. Study in this

area is particularly important from an economic point of view.

In the chemical industry, for example, a 1% cutdown on some

engineering performance index might result in saving millions

of dollars, far more than the initial cost of the extra machines.

In 1960, Butkovskii and Lerner initiated the theoreti-

26
cal study of optimal control of distributed parameter systems.

Shortly thereafter, in a series of papers 27'28 Butkovskii devel-

oped a general p_oblem formulation and derived the maximum

principle for distributed parameter systems, which is analogous

to the maximum principle for lumped parameter systems derived

by Pontryagin, et al.

Theoretical contributions following these pioneer works

31,32 34
can be found in papers by Wang, 33 Sakawa, Yeh and Ton,
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25 29
Axelband and Chandhuri. To date, considerable work has been

done on various types of linear partial differential equations,

although the mathematics involved in the process of analysis

is in such difficult and abstract fields as functional

analysis and semi-group theory. In most of the works, a norm

of a certain functional in Banach space is taken as the per-

formance index to be minimized. The resulting control law is

governed by an integral equation or integro-differential equa-

tion.

Particularly if the control force is limited in

magnitude, control has proven to be of the bang-bang type,

while the governing equation becomes a non-linear integral

equation involving the sign function. Such governing equations

are almost impossible to solve analytically, as _is the

Hamilton-Jacob partial differential equation governing the

optimum control law for lumped parameter systems.

Some other procedures for obtaining the numerical

version of the optimum control law for distributed parameter

systems have been suggested. Wang has developed a bang-bang

type quasi-time-optimum control scheme for a fairly general

class of distributed parameter systems for which the corres-

ponding uncontrolled systems are stable. This method is

simple and practical, and the idea is basically analogous to

quasi-time-optimum control with linear switching functions

for lumped parameter systems. Extension of such an idea would

lead to the application of the chatter mode adaptive policy

for distributed parameter systems.
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B.2 Analysis of the Application to Parabolic Systems

Let D be a bounded, open, simply connected subset

of a Euclidian space, which is assumed for simplicity to have

at most three dimensions. The boundary of D will be denoted by

_D, and the time interval [0,+-], by T. Let the problem be

a boundary value control type, _o that the boundary _D con-

sists of two subsets, the controlled boundary _D c and the

uncontrolled boundary _D u. Further, _D u may be divided into

the prescribed boundary _Dp and the free boundary _Df. These

boundaries are not necessar±ly connected. The general form

of the governing equation for the distributed parameter systems

under consideration takes the partial differential equation

of the parabolic type:

m_ (B.I)-- q_t

for all

(t,x) C T x D

where the independent scalar variable q is a function of time

t and the spatial vector _, i.e.,

q = q(x,t)

and the notation _ stands for a linear spatial differential

operator of the elliptic type:

= a V 2 + b V + c (B.2)

95



or if the divergence form is used

= a* V + V b* + c* (B.3)

where, as usual, V2 represents the Laplacian operator,

V(scalar) the gradient vector of the scalar, and V(vector) the

divergence of the vector. Each of the parameters a, b, c,

and their asterisked form may be a function of both t and x.

There are the following relations between the asterisked and

un-asterisked forms:

a = a*

b = Va* + b* (B.4)

c = b* V + c*

Let the initial distribution q(x, 0) be q0(x)

q(_,0) = q0(x) for all x C D (B.5)

Let the prescribed boundary condition be qp(X,,t)

q(x,t) = qp(X,t)
for all x C 8D (B.6)

-- p

The bang-bang control function u is assumed to be homogeneous

over the controlled boundary, and it makes the boundary condi-

tion the Dirichlet type, the Neumann type, or the general

type, namely
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u(t) = B(t) sgn S(t)-

q(x,t) Dirichlet type

Neumann type

_q(_,t)

sq(x,t) + 8 _n (B.7)

general type

s, B = constants

for all x C _D
-- c

where 8q represents the normal derivative of q or the com-
_n

ponent of Vq in the direction of the outer normal vector n

at the boundary. If q represents temperature, for instance,

the control function may be the temperature itself at the

boundary for the Dirichlet type, the heat flow rate through

the boundary for Neumann type, and the temperature of the

surrounding medium for the general type.

Let

e(x,t) = q(x,t) - qd(x) (B.8)

for all x 6 D

where qd(_) represents the desired steady distribution.

It is now desired to drive the system from the

initial state so as to make e(x,t) eventually remain null for

all x C D. Let 2y(t) be the squared Euclidean norm for e(x,t),

namely

1 2 ½/// (x,t) dT (B.9)
y(t) = _ I le(x,t) II = e 2

D
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where dT represents the elementary volume. Clearly, if y(t)

is kept identically zero, so also is e(x,t) for all _ 6 D.

Keeping this in mind, let us establish the switching function

such that

S = y(t) - g(t) (B. I0)

where g(t) presumably has the following properties:

g (t) > 0

lim g (t) = 0

t÷_

for 0 < t <

(B. ii)

In addition, g(t) is differentiable at least once. The

specific form is to be determined for a particular case. Now

S becomes

S = y(t) - g(t) (B.12)

y(t) can be evaluated as follows•

• ///y (t) = e 8-_-

D

From eq. (B.9)

dT (B. 13)

Using eq. (B.I), (B.2), and (B.8)

y(t) =/// [a q V 2 q + q b vq + c q2

D

2

- a qd V q

-qd _ vq - c qd q] dT (B. 14)
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But Green's theorem says

f// a V2 dT= [[ _q duq q a q
JJ _n

D _D

- ]J] (Va q) Vq dr

D

where da represents the elementary surface area•

Hence S takes the form

(B.15)

=// a q %n_qdu + 7(t) (B.16)

_D
C

where

Y (t) = a q _n

Dn D

[q b Vq - (Vaq) Vq

(B. 17)

+ c q2 _ a qd v2q - qd b Vq - c qd q] dT

If the control is Dirichlet type, we obtain from eq.

(B.16)

(B. 7) and

• ///S = B sgn S a _q da + y(t) (B.18)
_n

D C

In order for the above expression to take the form of (3.1a),

B must be

B = - M sgn U (B.19)
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where

_ = f_D a _q_n da

c

and the switching level M is normally positive.

S can now be rewritten as

(B.20)

4

S = -_ M sgn U sgn S + y(t)

and the control force u is

(B.21)

u = -M sgn U sgn S (B.22)

In most physical systems the solution to the partial differen-

tial equation can be expressed as

t

q(x,t) = k0(x,t) + f k I (x,t-T)

u(_) dr (B. 23)

for x 6 D

where the concrete expressions for k 0 and k I are determined

by the specific form of the partial differential equation

(B.I) and the prescribed initial and boundary conditions• In

spite of the bang-bang behavior of the control force u, q(x,t)

for x C D will be continuous in time, owing to the convolution

integral in eq. (B.23). The same is also true for Vq and V2q.

Thereby, y(t) will not register any undesirable discontinuous

phenomena directly coupled with u given in eq. (B.22). A

certain appropriate switching level adjustment would thus be
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possible in Order to sustain the chatter mode or to keep S

near zero, and consequently to drive q(_,t) eventually to the

desired distribution qd(_). Fig. B.1 shows the mathematical

block diagram for the Dirichlet type control discussed. The

case for the Neumann or general type control can be similarly

analyzed.
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APPENDIX C

AN APPLICATION OF THE CHATTER MODE:

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

As a byproduct of this study, a new method for

obtaining the numerical solution of ordinary differential

equations has been discovered. Once the chatter mode is

reached, as mentioned in the body of this thesis, the

average dynamic behavior of the system is completely described

by the equation of the switching function and is independent

of the plant's characteristic equation.

Given an ordinary differential equation to solve, we

can think of it as a switching function. First, we create

an analytically solvable differential equation involving

this switching function and assign a suitable initial condi-

tion to this secondary equation. Then we achieve a continuous

chatter mode with switching levels of great magnitude. The

output from the auxiliary equation will be the solution to

the original equation. The following paragraphs present the

concrete description of this method.

In general, an ordinary differential equation of n'th

order can be written in the form

x(n) _ f { x(n-1), x(n-2) . . . ", , x, x, t } = 0 (C.I)
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The equation may be linear or nonlinear, time-variant or

time-invariant, and either homogeneous or not. The initial

condition for the above equation is assumed to be given

at t=0 (C.2)

x = x(0) x = x(0) . . • x (n-l) = x (n-l) (0)

The state variable representation is

x= xI

x = x I = x 2

x= = x 3 (C.3)

X (n) •
= xn =Xn+ 1

The left hand side of eq. (C.l)is rewritten, and is now

regarded as the switching function S

S = Xn+ 1 - f(x n, Xn_ I, • . ., x2, Xl, t)
(C.4)

The initial condition (C.2) is also converted

at t=0

= Xl{0).. x 2 = x2(0). _ . . . x n = Xn(0)x I
(c.5)

Next, let us draw up a new differential equation of n+l'th

order

(n+l) = u (C.6a)
x

or
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x I = x 2

x 2 = x 3

x n = Xn+1

Xn+1 = u

(C. 6b)

where u represents the "bang-bang m control force" expressed by

u = -M sgn S

and where M is the switching level and is positive.

eq. (C.4), (C.6b), and (C.7), S becomes

n

•S = Xn+ 1 _ _x i i

i=l

= -M sgn S -

n

_f _f

- _ x_iXi+l

i=l

Using

(c.8)

where the function f has been assumed to be differentiable

at least once for each of its arguments.

The form of eq. (C.8) certainly indicates a potential

chatter mode for large values of M. The initial condition

associated with the auxiliary differential equation (C.6b)

should be selected to match the given initial condition (C.5)

of the original differential equation (C.I). Xn+l(0) , which

is necessary in the initial condition of the auxiliary equation

but missing in that of the original equation, should be arti-
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ficially specified in such a way that the initial value of the

switching function, SO, is essentially zero. If u is given,

the auxiliary equation is solvable analytically, and no numer-

ical integration is needed.

Now suppose that the chatter mode has been continuous

from t=0 to the present time, t, and the control polarity has

reversed j times, or, in other words, the digital computer

has found the sign of S changed j times. Let tj be the time

when the last reversal occurred (fig. C.I). Let us define

the following:

At -- t - t. j = 0, I, . . . (C.9)
3

At£- t£+ 1 - t 9. = 0, i, . . ., j-i (C.10)

= s (tj) (C. ii)S 3

uj -= u(tj +) (C.12)

In eq.

t0 = 0.

(C.10, _ represents the time of the £'th reversal,

By definition,

• = -M sgn S. = (-1} j u 0u (t) = u 3 3
(C. 13)

But u(t) may not necessarily be -M sgn S(t) because the

computation time is discrete as indicated in fig. C.I.

The equation describing the present state can be

readily obtained by integrating the auxiliary equation (C.6b)

from t. to t with u. such that
3 3
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Xn+l(t) = Xn+l(tj) + uj At

U •

Xn(t) = Xn(t j) + Xn+l(t j) At + ? At 2
(C. 14)

x l(t) = x l(tj) + x 2(tj) At + .

+

/

U.
At n+l

(n + i)!

• . + Xn+ I (tj) At n

n!

where the initial value of j is 0. For each value of t after

tj, the state is computed according to the above equation. If

the sign of S has been changed according to eq. (C.4), t be-

comes the new tj, the control force changes its polarity, and

the old x l(tj) , x 2(tj) . . ., Xn+ l(tj) are replaced by new

values. The switching level M should be great enough to main-

tain the chatter mode throughout a run.

Since no numerical integration is involved in this

method, there is no accumulated truncation error, which is a

disadvangage of other methods, such as the Runge-Kutta method,

especially when the size of the time steps is too small. In

the proposedmethod, the smaller the size of these steps, the

more accurate the solution, because extremely small steps per-

mit the computer to find the sign change before the state point

deviates significantly from the switching surface. The vari-

ables to be stored in the memory are essentially the state vari-

ables at the last switching time, xl(tj), x2(tj), . . .Xn+l(tj).

This will require considerably less storage than the Rugne-Kutta

method. Fig. C.2 shows the flow chart illustrating the proposed

procedure.
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Fig. C.I State Space Representation of the Numerical

Solution to an Ordinary Differential Euqation

by the Proposed Method
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